Backpaper - Partial Differential Equations (2022-23)

Time: 3 hours.
Attempt all questions, giving proper explanations.

1. Give an example to show that non-uniqueness might hold for differential equations of the form $u^{\prime}(t)=f(u(t)), u\left(t_{0}\right)=u_{0}$, with continuous $f: \mathbf{R} \rightarrow \mathbf{R}$, unless some additional assumptions are made on f. [4 marks]
2. Find the general solution $u: \mathbf{R} \rightarrow \mathbf{R}$ of $u^{\prime \prime}+2 u^{\prime}+u=e^{-x}$. [$\mathbf{6}$ marks]
3. Find the solution of the one dimensional heat equation $\partial_{t} u=\partial_{x x} u$ on the spatial interval $[0, \pi]$, with boundary conditions $u(t, 0)=u(t, \pi)=0$, and initial profile $u(0, x)=f(x)$ satisfying the boundary conditions. Clearly state any assumptions you might make in solving the problem. [7 marks]
4. Solve the equation $\left(1+x^{2}\right) u_{x}+u_{y}=0$ for $u: \mathbf{R}^{2} \rightarrow \mathbf{R}$. Sketch some of the characterisitc curves. [6 marks]
5. Suppose $u^{(i)}, i=1,2$ satisfy the one dimensional heat equation $u_{t}^{(i)}-u_{x x}^{(i)}=f(x, t)$ with boundary conditions $u^{(i)}(0, t)=g(t), u^{(i)}(1, t)=h(t)$ for $t>0$, and initial condition $u^{(i)}(x, 0)=\phi^{(i)}(x)$ for $0<x<1$. Show that

$$
\max _{0 \leq x \leq 1}\left|u^{(1)}(x, t)-u^{(2)}(x, t)\right| \leq \max _{0 \leq x \leq 1}\left|\phi^{(1)}(x)-\phi^{(2)}(x)\right| \quad \text { for } t>0 .
$$

[5 marks]

6. - Write down the fundamental solution of the heat equation: $u_{t}-\Delta u=0$ on $\mathbf{R}^{n} \times(0, \infty)$. [3 marks]

- Write down the fundamental solution of Laplace's equation: $\Delta u=0$ on \mathbf{R}^{n} [$\mathbf{3}$ marks]

7. Let $u: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be a twice continuously differentiable function which satisfies

$$
u(\mathbf{x})=f_{\partial B(\mathbf{x}, r)} u(\mathbf{y}) d S(\mathbf{y})
$$

for all \mathbf{x} and $r>0$, where the right hand side is the average integral of u over the boundary of the ball $B(\mathbf{x}, r)$.

- Show that

$$
u(\mathbf{x})=f_{B(\mathbf{x}, r)} u(\mathbf{y}) d \mathbf{y}, \quad[\mathbf{5} \text { marks }]
$$

- What PDE does u satisfy? [2 marks]

8. Let $H: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be convex.

- Write down the definition of the Legendre transform of H (denoted as H^{*}). [2 marks]
- We say \mathbf{q} belongs to the subdifferential of H at \mathbf{p}, written $\mathbf{q} \in \partial H(\mathbf{p})$, if

$$
H(\mathbf{r}) \geq H(\mathbf{p})+\mathbf{q} \cdot(\mathbf{r}-\mathbf{p}), \quad \text { for all } \mathbf{r} \in \mathbf{R}^{n} .
$$

Prove $\mathbf{q} \in \partial H(\mathbf{p})$ if and only if $\mathbf{p} \in \partial L(\mathbf{q})$ if and only if $\mathbf{p} \cdot \mathbf{q}=H(\mathbf{p})+L(\mathbf{q})$, where $L=H^{*}$. [7 marks]

